The loci of evolution: how predictable is genetic evolution?
نویسندگان
چکیده
Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This "cis-regulatory hypothesis" has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question "Do coding or cis-regulatory mutations cause more phenotypic evolution?" hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.
منابع مشابه
Optimization of Beam Orientation and Weight in Radiotherapy Treatment Planning using a Genetic Algorithm
Introduction: The selection of suitable beam angles and weights in external-beam radiotherapy is at present generally based upon the experience of the planner. Therefore, automated selection of beam angles and weights in forward-planned radiotherapy will be beneficial. Material and Methods: In this work, an efficient method is presented within the MATLAB environment to investigate how to improv...
متن کاملWell Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملOn Feasibility of Adaptive Level Hardware Evolution for Emergent Fault Tolerant Communication
A permanent physical fault in communication lines usually leads to a failure. The feasibility of evolution of a self organized communication is studied in this paper to defeat this problem. In this case a communication protocol may emerge between blocks and also can adapt itself to environmental changes like physical faults and defects. In spite of faults, blocks may continue to function since ...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملA new metaheuristic genetic-based placement algorithm for 2D strip packing
Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 62 9 شماره
صفحات -
تاریخ انتشار 2008